Non sempre il dielettrico ha proprio proprio il valore dichiarato nelle tabelle -vedi le costanti dielettriche più comuni nei cavi di discesa-. Può essere necessario misurare il Vf di quel cavo lì che abbiamo già in casa (e che, nel mio caso, talvolta non ricordo neanche esattamente da dove venga).

DIELECTRIC CONSTANTS AND VELOCITY FACTORS OF SOME COMMON DIELECTRIC MATERIALS USED IN COAX CABLES		
MATERIAL	DIELECTRIC CONSTANT	VELOCITY FACTOR
Polyethylene	2.3	0.659
Foam polyethylene	1.3 - 1.6	0.88 - 0.79
Solid PTFE	2.07	0.695

Il cavetto dev'essere intestato (SMA, o N, o BNC o il connettore che vi è più comodo). L'altro lato è libero (circuito aperto).

Si lavoro nel dominio delle frequenze. Si usa o un VNA (anche mini) o un accoppiatore direzionale o un SWR meter.

Con i primi due l'intorno della frequenza che si usa è tale da far misurare il cavetto lambda mezzi. Andando a leggere l'SWR invece bisogna usare la frequenza metà, e quindi ovviamente lo stesso cavetto misurerà lambda quarti.

Esempio.

Si tratta di un cavetto lungo (si fa per dire) 108mm, con un Vf che non conosco o con un Vf del quale non mi fido, foto 1.

Foto 1

Lo collego al VNA e leggo l'andamento di fase dell's11, nel caso specifico da 30KHz a 6GHz, come in foto 2.

Foto 2

Poiché devo andare a prendere il primo passaggio di fase attraverso lo zero, posso fermare lo sweep a 1500MHz in modo da includere TUTTO il primo tratto discendente, al completo. Foto 3.

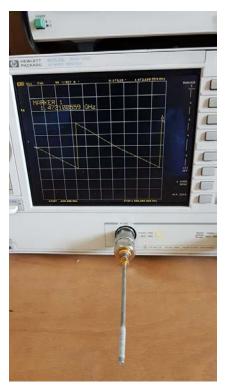


Foto 3

Fatto questo guardo a quale frequenza la fase di S11 è zero, foto 4.

Foto 4

La fase è zero (in realtà qui ci sono +64.5 milligradi) a 934,221MHz. La formula (in fondo dico anche perché) è:

Vf=0.00667128xLxF a)

dove L è la lunghezza fisica (espressa in metri) del cavetto (dal taglio fino al bordo del connettore usato)

e F è la frequenza (in MHz) del passaggio per lo zero.

Fatto il calcolo, il fattore di velocità risulta essere di 0.6731.

Controprova.

Ho preso uno spezzone del medesimo cavetto ma più lungo (590mm), foto 5.

Foto 5

In realtà dalla parte aperta è addirittura intestato con un N, ma siccome l'N ha il dielettrico in aria (eps rel =1) ed è molto corto rispetto al cavetto, non contribuisce. La prima transizione avviene a 171,175MHz, foto 6.

Foto 6

Rifatto il calcolo, il fattore di velocità perciò risulta essere di 0.6737.

Non male come prova di precisione, no?

O meglio: basta un pezzettino di cavetto, anche molto corto, anche solo 10cm, per calcolarne il fattore di velocità Vf; (nel dominio del tempo -TDR- sarebbe stato molto più difficile leggere il Vf su un cavetto lungo 108mm, temo).

Con un accoppiatore direzionale (o con un buon ROSmetro) è sufficiente un generatore che copra le frequenze metà di quelle di un VNA, in quanto il cavetto risulterà lavorare come un lambda quarti.

A lambda quarti l'impedenza -teoricamente infinita- applicata al lato aperto del cavetto si trasformerà in impedenza -teoricamente zero- alla bocca del ROSmetro/accoppiatore direzionale. In realtà pochi ohm. Lì il ROS non sarà certamente basso, ma sarà più basso che altrove.

Una volta trovata il minor ROS, si applicherà questa formula:

Vf=0.01334256xLxF b)

Dove, come prima, L è la lunghezza in metri del cavetto e F è la frequenza (espressa in MHz) in corrispondenza del ROS più basso.

Da dove viene la formula a)?

Viene da qui:

Il coefficiente di riflessione Gamma assume valori che vanno da -1 per i cortocircuiti, rimangono negativi per carichi inferiori alla impedenza caratteristica della linea, è zero per carichi perfettamente adattati, diventa positivo per carichi maggiori dell'impedenza caratteristica e raggiunge il +1 per i circuiti aperti (il nostro caso). Usando impedenze normalizzate rispetto all'impedenza caratteristica si ha:

Gamma = (ro, theta) = (Z-1)/(Z+1) = (1-Y)/(1+Y)

Dove Z impedenza e Y ammettenza sono numeri complessi.

Allora:

s11 = Gamma = (Z-1)/(Z+1) = (1-Y)/(1+Y)

Un circuito aperto, il nostro caso, alla distanza di lambda mezzi risulta in un'ammettenza uguale a zero (o impedenza infinita, come si vuole).

Quindi s11 = Gamma = (1-0)/(1+0) = 1+j0 (come più sopra descritto).

Il risultato è quindi 1+j0: l'argomento (fase) è zero.

Ecco perché andiamo a cercare il primo passaggio della fase per lo zero: perché lì, a quella frequenza, il tratto di cavetto è lungo esattamente lambda mezzi.

Adesso abbiamo:

Lambda = c/F (c velocità della luce 299.792.240 metri/sec)

Lambda mezzi = c/(2xF)

Lambda mezzi x Vf = L (lunghezza del cavetto)

quindi

Vf = 2xLxF/c = 0.00667128 x L x F

Ecco qua la formula.